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What is this about?

Let K be a global field, A a central simple
K -algebra, O a holomorphy ring of K , and
R a classical maximal O-order in A.

A ∼= Mn(D)

R

K

O

Investigate factorizations of elements in R:

I Every a ∈ R• \ R× can be represented as a finite product of atoms
(irreducibles).

I In general, this is far from being unique.

I ⇒ Study non-uniqueness of factorizations by means of arithmetical
invariants.



Outline

1. Recall: Non-unique factorizations in commutative Krull domains
[monoids].

2. Main results for maximal orders.

3. Abstract setting for these results and some sketch of their proof.



Non-unique factorizations

Consider factorizations of elements into atoms.

Goals

Use arithmetical invariants to

I describe the extent of non-uniqueness,

I describe features occuring as part of this non-uniqueness,

I and possible characterize rings [monoids] inside a class by their
arithmetic.

Has a rich history and well-developed theory & machinery in the
commutative setting: In particular in Krull domains [monoids].



(Commutative) Krull domains

Definition

A Krull monoid is a commutative, cancellative monoid H that is

1. completely integrally closed, and

2. v -noetherian.

Equivalently, it is a saturated submonoid of a factorial monoid.

I A commutative domain R is a Krull domain ⇔ R• is a Krull monoid.

I I∗v (R) is a free abelian monoid on the (non-zero) divisorial prime
ideals.

I R•red = {aR | a ∈ R•} ⊂ I∗v (R) is a saturated submonoid.

Idea

Study factorizations of a ∈ R• using the unique factorization of aR into
divisorial prime ideals in I∗v (R).



Monoid of zero-sum sequences, I
Let G be an abelian group, G0 ⊂ G , (F(G0), ·) the free abelian monoid
with basis G0.

I S = g1 · . . . · gl ∈ F(G0) is called a sequence.

I σ(S) = g1 + . . .+ gl ∈ G is its sum.

I S is a zero-sum sequence if σ(S) = 0.

Definition

The submonoid

B(G0) = { S ∈ F(G0) | σ(S) = 0G } ⊂ F(G0)

is called the monoid of zero-sum sequences over G0.

I B(G ) is a Krull monoid with divisor class group G , and every class
contains a prime divisor.

I If G0 is finite, then B(G0) is a finitely generated Krull monoid (finitely
many atoms, arithmetical invariants finite, ...)



Some arithmetical invariants

Let a ∈ R• \ R×.

I l ∈ N is a length of a if there exist atoms u1, . . . , ul s.t.:

a = u1 · . . . · ul .

I L(a) ⊂ N0 denotes the set of lengths of a.

I If L(a) = {l1 < l2 < . . .}, then

∆(a) = { li − li−1 | for all i }

is the set of distances of a.

I ∆(R•) =
⋃

a∈R• ∆(a) is the set of distances of R•.



Sets of lengths

I R is half-factorial if L(a) is a singleton for all a ∈ R•.

I If R is not half-factorial, sets of lengths are not uniformly bounded.
Proof: Let a ∈ R•, such that { k < l } ⊂ L(a), say

a = u1 · . . . · uk = v1 · . . . · vl .

Then, for all n ∈ N, ν ∈ [0, n],

an = (u1 · . . . · uk)ν(v1 · . . . · vl)n−ν ,

hence
{ kν + (l − k)(n − ν) | ν ∈ [1, n] } ⊂ L(an).

Remark

R• is a BF-Monoid if L(a) is finite for all a ∈ R•. If R is a commutative
domain [monoid] and v -noetherian, then it is BF.



Transfer homomorphism

I Useful tool: Transfer homomorphism to a simpler monoid.

I Transfer homomorphisms preserve sets of lengths (and other
arithmetical invariants).

Theorem

Let H be a Krull monoid (e.g. H = R• where R is a Krull domain), G its
divisor class group, and GP = { [p] | p ∈ v-max(H) } ⊂ G the set of classes
containing prime divisors.
There is a transfer homomorphism θ : H → B(GP):

Hred
� � //

θred
��

I∗v (H) = F(v-max(H))

��

aH× � //
_

θred
��

aH = p1 ·v . . . ·v pk_

��
B(GP) �

� // F(GP) [p1] · . . . · [pk ] �
� // [p1] · . . . · [pk ]



Monoid of zero-sum sequences, II

B(G ) provies an easier to study model for the factorization in R•. We get
(for example):

Corollary

Let R be a Krull domain with divisor class group G in which every class
contains a prime divisor.

1. R is half-factorial ⇔ |G | ≤ 2.

2. ∆(R•) is a finite interval with min ∆(R•) = 1 (if non-empty).

3. Uk(R•) is a finite interval.

4. Structure theorem for sets of lengths holds (sets of lengths are
AAMPs with uniform bound M ∈ N0 and difference d ∈ ∆(R•)).



Maximal orders: Main result, part I

Let K be a global field, O a holomorphy ring in K , A a central simple
K -algebra and let R be a classical maximal O-order in A.

PA = { aO | a ∈ K×, av > 0 for all arch. places v of K with Av ramified. }

Theorem 1

Suppose that every stably free left R-ideal is free. Then there exists a
transfer homomorphism

θ : R• → B(CA(O)),

with CA(O) = F×(O) /PA a ray class group of O.



Maximal orders: Main result, part II

Let K be a number field, O = OK its ring of algebraic integers.

Theorem 2

Suppose that there exist a stably free left R-ideal that is not free.
Then there exists no transfer homomorphism θ : R• → B(G0), where G0 is
any subset of of an abelian group. Moreover,

1. ∆(R•) = N,

2. For every k ≥ 3, N≥3 ⊂ Uk(R•) ⊂ N≥2 .



The condition of the theorems

By Eichler’s Theorem, the condition of Theorem 1 can only be violated if:

I K is an algebraic number field, (A : K ) = 4, and A is ramified at
every place of K not arising from O, or

I K is a function field, and A is ramified every place of K not arising
from O,

Restrict to K a number field, O = OK its ring of algebraic integers:

I If A is not a totally definite quaternion algebra, then Theorem 1
applies.

I If A is a totally definite quaternion algebra, in all but finitely many
cases (all classified), Theorem 2 applies.



Abstract setup (for rings)

Remark

An approach with two-sided ideals seems to be limited to normalizing Krull
monoids.

I Let Q be a quotient ring, and R a maximal order in Q.

I Write α for the Asano-equivalence class of maximal orders equivalent
to R.

I Let S ∈ α, I a fractional left [right] S-ideal:

Ol(I ) = { x ∈ Q | xI ⊂ I } = S Or (I ) = { x ∈ Q | Ix ⊂ I }[= S ]

Set
I−1 = (Ol(I ):r I ) = (Or (I ):l I ) = { x ∈ Q | IxI ⊂ I }.

I is divisorial if
I = Iv := (I−1)−1.



Groupoid of divisorial fractional ideals

I Write Fv (α) for the set of all such divisorial fractional ideals, Iv (α)
for the divisorial integral ideals.

I If I , J ∈ Fv (α) with Or (I ) = Ol(J),

I ·v J := (IJ)v .

I Maximality of Ol(I ), Or (I ) implies

I ·v I−1 = Ol(I ) and I−1 ·v I = Or (I ).

Theorem

Fv (α) with ·v as partial operation forms a groupoid (=category in which
every morphism is an isomorphism), Iv (α) is a subcategory.



Groupoid of divisorial fractional ideals

Assume

1. R satisfies the ACC on divisorial left [right] R-ideals;

2. R is bounded;

3. The lattice of divisorial fractional left [right] R-ideals is modular.

Then Fv (α) is “nice”.

Strategy

To study a ∈ R•, study instead Ra in the subcategory

HR• = { d(Rb)d−1 | b ∈ R•, d ∈ Q× }

of Iv (α).



Abstract norm

Provides an invariant for the factorizations of elements of Iv (α) into
maximal ones.

I The divisorial fractional two-sided R-ideals form a free abelian group
on the maximal divisorial two-sided R-ideals.

I If S ∈ α, there is a canonical isomorphism between divisorial fractional
two-sided R-ideals and divisorial fractional two-sided S-ideals. (vertex
groups of the groupoid G = Fv (α)): If I is a divisorial (R, S)-ideal,

{ div. frac. R-ideals } ∼→ { div. frac. S-ideals }
X 7→ I−1 ·v X ·v I

I Form G, a “universal vertex group” by identifying these groups.



Abstract norm, II

I Let M ∈ G be maximal integral, X the largest div. frac. two-sided
Ol(M)-ideal contained in M.

I Set η(M) = (X ) ∈ G.

I Extend multiplicatively to a homorphism η : G → G.

Remark

If R is a classical maximal O-order in a CSA A over a global field K , there
is a bijection spec(R)

∼→ spec(O), under which η corresponds to the usual
reduced norm.



Factorization of divisorial one-sided ideals

Asano, Murata (1953)

Let I ∈ Iv (α). Then:

I = M1 ·v . . . ·v Mm with M1, . . . ,Mm ∈ Iv (α) maximal integral.

1. If also M1 ·v . . . ·v Mm = N1 ·v . . . ·v Nn then m = n.

2. There exist a permutation σ ∈ Sm s.t.
( η(M1), . . . , η(Mm) ) = ( η(Nσ(1)), . . . , η(Nσ(n)) ).

3. For every τ ∈ Sm there exist max. integral M ′1, . . . ,M
′
m with

η(M ′i ) = η(Mτ(i)) and

I = M ′1 ·v . . . ·v M ′m

Thus Iv (α) takes the place of the free abelian monoid, HR• the place of
R•red = { aR | a ∈ R• }.



Abstract main result (for rings)

Theorem

Let Q be a quotient ring, and R a maximal order in Q such that

1. R satisfies the ACC on divisorial left [right] R-ideals;

2. R is bounded;

3. The lattice of divisorial fractional left [right] R-ideals is modular.

Then L(a) is finite and non-empty for all a ∈ R•.

Let P = {η(Ra) | a ∈ Q•} ⊂ G, C = G/P,

CM = {[η(I )] ∈ C | I a maximal integral left S-ideal, S ∈ α}.

Assume further:

4. A divisorial fractional left R-ideal I is principal ⇔ η(I ) ∈ P.

5. For all S ∈ α, and all g ∈ CM , there exists a maximal divisorial left
S-ideal I with [η(I )] = g.

Then there exists a transfer homomorphism R• → B(CM).



Obtaining Theorem 1

Let K be a global field, O a holomorphy ring in K , A a central simple
K -algebra, and R a classical maximal O-order.

1. R noetherian ⇒ ACC on divisorial left [right] R-ideals.

2. Every left [right] R-ideal contains an element of O• ⇒ R is bounded.

3. Every left [right] R-ideal is divisorial ⇒ modularity.

4. Bijection between projective class group and CA(O) implies

I stably free ⇔ nr(I ) ∈ PA ⇔ η(I ) ∈ P.

Stably free ⇒ free implies that the required condition holds.

5. Analytic number theory: Every class of CA(O) contains infinitely
many prime ideals ⇒ last condition satisfied, and CM = C .



On the proof of Theorem 2

If K is a number field, R a maximal order in a totally definite quaternion
algebra, Theorem 2 is proven by a combinatorial construction of a left
R-ideal I with suitable factorizations.

Ingredients:

I A result on the distribution maximal left R-ideals within the
isomorphism classes of left R-ideals (Kirschmer, Voight; 2010).

I A result on representation numbers of totally definite quadratic forms
(over totally real number fields).

Proposition

There exists a totally positive prime element p ∈ OK , a non-empty subset
E ⊂ { 2, 3, 4 } and for every l ∈ N0 an atom yl ∈ R• such that

LR•(ylp) = { 3 } ∪ (l + E ).


